高中数学说课稿

时间:2024-11-08 05:02:35
精选高中数学说课稿汇编9篇

精选高中数学说课稿汇编9篇

在教学工作者实际的教学活动中,常常要根据教学需要编写说课稿,说课稿有助于教学取得成功、提高教学质量。如何把说课稿做到重点突出呢?下面是小编帮大家整理的高中数学说课稿9篇,希望能够帮助到大家。

高中数学说课稿 篇1

一、教材分析

1、教材的地位和作用:

函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数及指数函数的图像和性质,同时也为今后研究对数函数及其性质打下坚实的基础。因此本节课内容十分重要,它对知识起着承上启下的作用。

2、教学的重点和难点:

根据这节课的内容特点及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及应用,难点定为指数函数性质的发现过程及指数函数与底的关系。

二、教学目标分析

基于对教材的理解和分析,我制定了以下教学目标:

1、理解指数函数的定义,掌握指数函数图像、性质及其简单应用。

2、通过教学培养学生观察、分析、归纳等思维能力,体会数形结合思想和分类讨论思想,增强学生识图用图的能力。

3、培养学生对知识的严谨科学态度和辩证唯物主义观点。

三、教法学法分析

1、学情分析

教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也逐步形成,但由于年龄的原因,思维尽管活跃敏捷,却缺乏冷静深刻。因此思考问题片面不严谨。

2、教法分析:基于以上学情分析,我采用先学生讨论,再教师讲授教学方法。一方面培养学生的观察、分析、归纳等思维能力。另一方面用教师的讲授来纠正由于学生思维过分活跃而走入的误区,和弥补知识的不足,达到能力与知识的双重效果。

3、学法分析

让学生仔细观察书中给出的实际例子,使他们发现指数函数与现实生活息息相关。再根据高一学生爱动脑懒动手的特点,让学生自己描点画图,画出指数函数的图像,继而用自己的语言总结指数函数的性质,学生经历了探究的过程,培养探究能力和抽象概括的能力。

四、教学过程

(一)创设情景

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 次后,得到的细胞分裂的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?

学生回答: 与 之间的关系式,可以表示为 。

问题2:折纸问题:让学生动手折纸

学生回答:①对折的次数 与所得的层数 之间的关系,得出结论

②对折的次数 与折后面积 之间的关系(记折前纸张面积为1),得出结论

问题3:《庄子。天下篇》中写到“一尺之棰,日取其半,万世不竭”。

学生回答:写出取 次后,木棰的剩留量与 与 的函数关系式。

设计意图:

(1)让学生在问题的情景中发现问题,遇到挑战,激发斗志,又引导学生在简单的具体问题中抽象出共性,体验从简单到复杂,从特殊到一般的认知规律。从而引入两种常见的指数函数① ②

(2)让学生感受我们生活中存在这样的指数函数模型,便于学生接

受指数函数的形式。

(二)导入新课

引导学生观察,三个函数中,底数是常数,指数是自变量。

设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数 分别以 的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。

(三)新课讲授

1.指数函数的定义

一般地,函数 叫做指数函数,其中 是自变量,函数的定义域是R。

含义:

设计意图:为 按两种情况得出指数函数性质作铺垫。若学生回答不合适,引导学生用区间表示:

问题:指数函数定义中,为什么规定“ ”如果不这样规定会出现什么情况?

设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。

对于底数的分类,可将问题分解为:

(1)若 会有什么问题?(如 ,则在实数范围内相应的函数值不存在)

(2)若 会有什么问题?(对于 , 都无意义)

(3)若 又会怎么样?( 无论 取何值,它总是1,对它没有研究的必要.)

师:为了避免上述各种情况的发生,所以规定 。

在这里要注意生生之间、师生之间的对话。

设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。

教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。

1:指出下列函数那些是指数函数:

2:若函数 是指数函数,则

3:已知 是指数函数,且 ,求函数 的解析式。

设计意图 :加深学生对指数函数定义和呈现形式的理解。

2.指数函数的图像及性质

在同一平面直角坐标系内画出下列指数函数的图象

画函数图象的步骤:列表、描点、连线

思考如何列表取值?

教师与学生共同作出 图像。

设计意图:在理解指数函数定义的基础上掌握指数函数的图像与性质,是本节的重点。关键在于弄清底数a对于函数值变化的影响。对于 时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。

利用几何画板演示函数 的图象,观察分析图像的共同特征。由特殊到一般,得出指数函数 的图象特征,进一步得出图象性质:

教师组织学生结合图像讨论指数函数的性质。

设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。

师生共同总结指数函数的性质,教师边总结边板书。

特别地,函数值的分布情况如下:

设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。

(四)巩固与练习

例1: 比较下列各题中两值的大小

教师引导学生观察这些指数值的特征,思考比较大小的方法。

……此处隐藏11267个字……是否组成集合,并说明理由:

(1)大于3小于11的偶数;

(2)我国的小河流.

让学生充分发表自己的建解.

3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.

4.教师提出问题,让学生思考

(1)如果用A表示高-(3)班全体学生组成的集合,用表示高一(3)班的一位同学,是高一(4)班的一位同学,那么与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.[来源:Z,xx,k.com]

如果是集合A的元素,就说属于集合A,记作.

如果不是集合A的元素,就说不属于集合A,记作.

(2)如果用A表示"所有的安理会常任理事国"组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.

(3)让学生完成教材第6页练习第1题.

5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.

6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:

(1)要表示一个集合共有几种方式?

(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?

(3)如何根据问题选择适当的集合表示法?

使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

(四)巩固深化,反馈矫正

教师投影学习:

(1)用自然语言描述集合{1,3,5,7,9};

(2)用例举法表示集合

(3)试选择适当的方法表示下列集合:教材第6页练习第2题.

设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象

(五)归纳小结,布置作业[来源:Zxxk.com]

小结:在师生互动中,让学生了解或体会下例问题:

1.本节课我们学习了哪些知识内容?

2.你认为学习集合有什么意义?

3.选择集合的表示法时应注意些什么?

设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

作业:

1.课后书面作业:第13页习题1.1A组第4题.

2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材.

五.板书分析

PPT

集合的含义与表示

定义例1

集合×××××××

××××××××××××××

元素×××××××

×××××××例2

元素与集合的关系×××××××

××××××××××××××

作业××××××××××××××

高中数学说课稿 篇9

一、教材分析

本节是人教A版高中数学必修三第二章《统计》中的第三节 “变量间的相关关系” 的第二课时。在上一课时,学生已经懂得根据两个相关变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。这节课是在上一节课的基础上介绍了用线性回归的方法研究两个变量的相关性和最小二乘法的思想。

从全章的内容上看,线性回归方程的建立不仅是本节的难点,也是本章内容的难点之一。线性回归是最简单的回归分析,学好回归分析是学好统计学的重要基础。

二、教学目标

根据课标的要求及前面的分析,结合高二学生的认知特点确定本节课的教学目标如下:

知识与技能:

1. 知道最小二乘法和回归分析的思想;

2. 能根据线性回归方程系数公式求出回归方程

过程与方法:

经历线性回归分析过程,借助图形计算器得出回归直线,增强数学应用和使用技术的意识。

情感态度与价值观

通过合作学习,养成倾听别人意见和建议的良好品质

三、重点难点分析:

根据目标分析,确定教学重点和难点如下:

教学重点:

1. 知道最小二乘法和回归分析的思想;

2.会求回归直线

教学难点:

建立回归思想,会求回归直线

四、教学设计

提出问题

理论探究

验证结论

小结提升

应用实践

作业设计

教学环节

内容及说明

创设情境

探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:

问题与引导设计

师生活动

设计意图

问题1. 利用图形计算器作出散点图,并指出上面的两个变量是正相关还是负相关?

教师提问,学生

通过动手操作得

出散点图并回答

以旧“探”新:对旧的知识进行简要的提问复习,为本节课学生能够更好的建构新的知识做好充分的准备;尤其为一些后进生能够顺利的完成本节课的内容提供必要的基础。

教师引导:通过上节课的学习,我们知道散点图是研究两个变量相关关系的一种重要手段。下面,请同学们根据得出的散点图,思考下面的问题2.

问题2. 甲同学判断某人年龄在65岁时体内脂肪含量百分比可能为34,乙同学判断可能为25,而丙同学则判断可能为37,你对甲,

乙,丙三个同学的判断有什么看法?

学生能够表达自己的看法。有的学生可能会认为乙同学的判断是错误的;有的学生可能认为甲乙丙三个同学的判断都是对的,答案不唯一

该问题具有探究性、启发性和开放性。鼓励学生大胆表达自己的看法。通过设计该问题,引导学生自己发现问题,注意到散点图中点的分布具有一定规律,体会观测点与回归直线的关系;进而引起学生的对本节课内容的兴趣。

问题3. 反思问题,你还可以提出哪些问题吗?小组讨论,看哪个小组提出的问题多

在小组讨论的形式下和比较哪个小组提出的问题多,学生之间会充分的进行交流,提出问题

通过小组讨论比较,调动学生的学习积极性和兴趣,活跃课堂气氛,达到学生自己提出问题的效果,培养学生的学生创新思维和问题意识。

学生可能提出的问题:

①为什么甲、丙同学的判断结果正确的可能性较大,而乙同学判断结果正确的可能性较小?

②某人年龄在65岁时体内脂肪含量百分比最可能是多少?在其它年龄时呢?

③这些样本数据揭示出两个相关变量之间怎样的关系呢?

④怎样用数学的方法研究变量之间的相关关系呢?每个问题都是学生“火热的思考”成果

《精选高中数学说课稿汇编9篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式